3.183 \(\int \frac{\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=100 \[ \frac{2 (a \sec (c+d x)+a)^{5/2}}{5 a^4 d}-\frac{2 (a \sec (c+d x)+a)^{3/2}}{a^3 d}+\frac{2 \sqrt{a \sec (c+d x)+a}}{a^2 d}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{a}}\right )}{a^{3/2} d} \]

[Out]

(-2*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) + (2*Sqrt[a + a*Sec[c + d*x]])/(a^2*d) - (2*(a + a*
Sec[c + d*x])^(3/2))/(a^3*d) + (2*(a + a*Sec[c + d*x])^(5/2))/(5*a^4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0972202, antiderivative size = 100, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3880, 88, 50, 63, 207} \[ \frac{2 (a \sec (c+d x)+a)^{5/2}}{5 a^4 d}-\frac{2 (a \sec (c+d x)+a)^{3/2}}{a^3 d}+\frac{2 \sqrt{a \sec (c+d x)+a}}{a^2 d}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{a}}\right )}{a^{3/2} d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^5/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-2*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) + (2*Sqrt[a + a*Sec[c + d*x]])/(a^2*d) - (2*(a + a*
Sec[c + d*x])^(3/2))/(a^3*d) + (2*(a + a*Sec[c + d*x])^(5/2))/(5*a^4*d)

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{(-a+a x)^2 \sqrt{a+a x}}{x} \, dx,x,\sec (c+d x)\right )}{a^4 d}\\ &=\frac{\operatorname{Subst}\left (\int \left (-3 a^2 \sqrt{a+a x}+\frac{a^2 \sqrt{a+a x}}{x}+a (a+a x)^{3/2}\right ) \, dx,x,\sec (c+d x)\right )}{a^4 d}\\ &=-\frac{2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac{2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a+a x}}{x} \, dx,x,\sec (c+d x)\right )}{a^2 d}\\ &=\frac{2 \sqrt{a+a \sec (c+d x)}}{a^2 d}-\frac{2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac{2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d}+\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{a d}\\ &=\frac{2 \sqrt{a+a \sec (c+d x)}}{a^2 d}-\frac{2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac{2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{-1+\frac{x^2}{a}} \, dx,x,\sqrt{a+a \sec (c+d x)}\right )}{a^2 d}\\ &=-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{a}}\right )}{a^{3/2} d}+\frac{2 \sqrt{a+a \sec (c+d x)}}{a^2 d}-\frac{2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac{2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d}\\ \end{align*}

Mathematica [A]  time = 0.14375, size = 79, normalized size = 0.79 \[ \frac{2 \left (\sec ^3(c+d x)-2 \sec ^2(c+d x)-2 \sec (c+d x)-5 \sqrt{\sec (c+d x)+1} \tanh ^{-1}\left (\sqrt{\sec (c+d x)+1}\right )+1\right )}{5 a d \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^5/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*(1 - 2*Sec[c + d*x] - 2*Sec[c + d*x]^2 + Sec[c + d*x]^3 - 5*ArcTanh[Sqrt[1 + Sec[c + d*x]]]*Sqrt[1 + Sec[c
+ d*x]]))/(5*a*d*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.202, size = 224, normalized size = 2.2 \begin{align*}{\frac{1}{20\,d{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{2}}\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( 5\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sqrt{2}\arctan \left ( 1/2\,\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}+10\,\cos \left ( dx+c \right ) \sqrt{2}\arctan \left ( 1/2\,\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}+5\,\sqrt{2}\arctan \left ( 1/2\,\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}+8\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-24\,\cos \left ( dx+c \right ) +8 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x)

[Out]

1/20/d/a^2*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(5*cos(d*x+c)^2*2^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(
d*x+c)+1))^(1/2))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)+10*cos(d*x+c)*2^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)
/(cos(d*x+c)+1))^(1/2))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)+5*2^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(
d*x+c)+1))^(1/2))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)+8*cos(d*x+c)^2-24*cos(d*x+c)+8)/cos(d*x+c)^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.94421, size = 687, normalized size = 6.87 \begin{align*} \left [\frac{5 \, \sqrt{a} \cos \left (d x + c\right )^{2} \log \left (-8 \, a \cos \left (d x + c\right )^{2} + 4 \,{\left (2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} - 8 \, a \cos \left (d x + c\right ) - a\right ) + 4 \,{\left (\cos \left (d x + c\right )^{2} - 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{10 \, a^{2} d \cos \left (d x + c\right )^{2}}, \frac{5 \, \sqrt{-a} \arctan \left (\frac{2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, a \cos \left (d x + c\right ) + a}\right ) \cos \left (d x + c\right )^{2} + 2 \,{\left (\cos \left (d x + c\right )^{2} - 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{5 \, a^{2} d \cos \left (d x + c\right )^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/10*(5*sqrt(a)*cos(d*x + c)^2*log(-8*a*cos(d*x + c)^2 + 4*(2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*sqrt((a*
cos(d*x + c) + a)/cos(d*x + c)) - 8*a*cos(d*x + c) - a) + 4*(cos(d*x + c)^2 - 3*cos(d*x + c) + 1)*sqrt((a*cos(
d*x + c) + a)/cos(d*x + c)))/(a^2*d*cos(d*x + c)^2), 1/5*(5*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) +
a)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + a))*cos(d*x + c)^2 + 2*(cos(d*x + c)^2 - 3*cos(d*x + c) + 1)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/(a^2*d*cos(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{5}{\left (c + d x \right )}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**5/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(tan(c + d*x)**5/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]  time = 12.0769, size = 227, normalized size = 2.27 \begin{align*} -\frac{2 \,{\left (\frac{5 \, \arctan \left (\frac{\sqrt{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{2 \, \sqrt{-a}}\right )}{\sqrt{-a} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} + \frac{\sqrt{2}{\left (5 \,{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a\right )}^{2} + 10 \,{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a\right )} a + 4 \, a^{2}\right )}}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )}}{5 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-2/5*(5*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c)^
2 - 1)) + sqrt(2)*(5*(a*tan(1/2*d*x + 1/2*c)^2 - a)^2 + 10*(a*tan(1/2*d*x + 1/2*c)^2 - a)*a + 4*a^2)/((a*tan(1
/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d